Transactions of KarRC RAS :: Scientific publications
Transactions of KarRC RAS :: Scientific publications

Transactions of KarRC RAS :: Scientific publications
Karelian Research Centre of RAS
ISSN (print): 1997-3217
ISSN (online): 2312-4504
Transactions of KarRC RAS :: Scientific publications
Background Editorial committee Editorial Office For authors For reviewer Russian version
Transactions of KarRC RAS :: Scientific publications

Electronic Journal OJS



Series

Biogeography

Experimental Biology

Mathematical Modeling and Information Technologies

Precambrian Geology

Ecological Studies

Limnology and Oceanology

Research in the Humanities (2010-2015)

Region: Economy and Management (2012-2015)



Issues

2024

2023

2022

2021

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

1999-2008


SCIENTIFIC PUBLICATIONS
Н.С. Репкина, А.А. Игнатенко, К.М. Панфилова, А.Ф. Титов, В.В. Таланова.
Динамика активности супероксиддисмутазы и экспрессии кодирующих ее генов в листьях пшеницы при холодовой адаптации
N.S. Repkina, A.A. Ignatenko, K.M. Panfilova, A.F. Titov, V.V. Talanova. The dynamics of superoxid dismutase activity and its gene expression in wheat leaves during cold adaptation // Transactions of Karelian Research Centre of Russian Academy of Science. No 5. Experimental biology. 2017. Pp. 89-98
Keywords: low temperature; wheat; FeSOD and MnSOD gene expression; superoxide dismutase activity; tolerance
The effect of low hardening temperature (4°С) on the dynamics of the enzyme superoxide dismutase (SOD) activity and the transcript accumulation of its encoding genes – FeSOD and MnSOD – in the leaves of 7‑day-old seedlings of winter wheat (Triticum aestivum L.) variety Moscowskaya 39 was investigated. It was shown that already in 1 hour from the beginning of the treatment, the hardening temperature of 4°С causes a significant increase in cold tolerance of the seedlings, which then continues to increase monotonically, reaching a peak on the 7th day of the experiment. The process of cold adaptation in wheat seedlings was accompanied by an increase in SOD activity in wheat leaves, observed as soon as 1 hour after the beginning of the treatment. As the cold exposure continued, there was a further increase in SOD activity, which peaked on the 7th day of the experiment. In addition, it was determined that the increase in total SOD activity was accompanied by the accumulation of FeSOD and MnSOD gene transcripts in the seedlings’ leaves. The level of FeSOD gene mRNA rose significantly earlier (1 hour from the start of exposure to a temperature of 4°С) than MnSOD gene mRNA (after 1 day), and FeSOD mRNA level remained higher than MnSOD mRNA level throughout the period of cold exposure. Based on our results, we can conclude that the increase of SOD activity and upregulation of MnSOD and FeSOD genes under low hardening temperature enable effective neutralization of superoxide radicals and represent an important element in the process of cold adaptation in winter wheat plants.
Indexed at RSCI


  Last modified: May 30, 2017