Transactions of KarRC RAS :: Scientific publications
Transactions of KarRC RAS :: Scientific publications

Transactions of KarRC RAS :: Scientific publications
Karelian Research Centre of RAS
ISSN (print): 1997-3217
ISSN (online): 2312-4504
Transactions of KarRC RAS :: Scientific publications
Background Editorial committee Editorial Office For authors For reviewer Russian version
Transactions of KarRC RAS :: Scientific publications

Electronic Journal OJS



Series

Biogeography

Experimental Biology

Mathematical Modeling and Information Technologies

Precambrian Geology

Ecological Studies

Limnology and Oceanology

Research in the Humanities (2010-2015)

Region: Economy and Management (2012-2015)



Issues

2024

2023

2022

2021

2020

2019

2018

2017

2016

2015

2014

2013

2012

2011

2010

2009

1999-2008




SCIENTIFIC PUBLICATIONS
Б.О. Цыденов.
Численное моделирование весенней динамики планктона на примере Селенгинского мелководья оз. Байкал
B.O. Tsydenov. Numerical modeling of spring plankton dynamics in the Selenga shallow waters of Lake Baikal // Transactions of Karelian Research Centre of Russian Academy of Science. No 3. Limnology. 2019. P. 114–123
Keywords: mathematical model; phytoplankton; zooplankton; spring thermal bar; lake hydrobiology
This paper presents the results of numerical modeling of plankton dynamics during the thermal bar event in the Selenga shallow-water area of Lake Baikal. It has been discovered that phytoplankton concentrations in the shallow waters increase with the temperature rise, and the local maximum is shifted shoreward relative to the thermal bar front. Simulations have shown that the downslope flows caused by thermobaric instability facilitate phytoplankton expansion to the deeper part of the lake. The zooplankton distributions simulated by numerical experiments had a spatially monotonic growth profile directed towards the shore. This is due to the temperature conditions of the water environment: the higher the water temperature, the higher the zooplankton biomass. An important finding of this work is an assessment of effect of wind on the space-time structure of plankton concentrations for the bottom topography of the Selenga shallow waters of Lake Baikal. Modeling has demonstrated that wind-induced currents lead to mixing and settlement of phytoplankton biomass. This study revealed that the westerly winds acting oppositely to the movement of the thermal bar tend to slow down the horizontal expansion of phytoplankton and zooplankton to the central part of Lake Baikal.
Indexed at RSCI


  Last modified: April 7, 2019